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Abstract The efficent implementation of collective communication is a key factor to pro-
vide good performance and scalability of communication patterns that involve
global data movement and global control. Moreover, this is essential to enhance
the fault-tolerance of a parallel computer. For instance, to check the status of
the nodes, perform some distributed algorithm to balance the load, synchronize
the local clocks or do performance monitoring. For these reasons the support for
multicast communications can improve the performance and resource utilization
of a parallel computer.

The Quadrics interconnect (QsNET), which is being used in some of the
largest machines in the world, provides hardware support for multicast. The
basic mechanism consists of the capability for a message to be sent to any set
of contiguous nodes in the same time it takes to send a unicast message. The
two main collective communication primitives provided by the network system
software are the barrier synchronization and the broadcast. Both of them are
implemented in two different ways, either using the hardware support, when
nodes are contiguous, or a balanced tree and unicast messaging, otherwise.

In this paper some performance results are given for the above collective com-
munication services, that show, on the one hand, the outstanding performance
of the hardware-based primitives even in the presence of a high network back-
ground traffic; and, on the other hand, the limited performance achieved with the
software-based implementation.

Keywords: Interconnection networks, Quadrics, collective communication, multicast, per-
formance evaluation.
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1. Introduction

Current trends on high-speed interconnects include the availability of a com-
munication processor in the network interface card [3][10], which allows the
implementation of high level messaging libraries without explicit intervention
of the main CPU [4]; and the support for collective communications at hardware
level [11], which outperforms traditional software-based multicast implemen-
tations. Both approaches can aid in the implementation of communication
patterns which involve global data movement and global control. Barrier syn-
chronization, broadcast, gather, scatter, reduce and total exchange are typical
examples of collective communication patterns.

Hardware support for multicast communication combined with the local
processing power provided by network processors gives the opportunity of
addressing several open problems in current and future medium- and large-scale
parallel computers: scalability, responsiveness, programmability, performance,
resource utilization and fault-tolerance. Many recent research results show
that job scheduling techniques based on gang scheduling and coscheduling
algorithms can provide solutions to these open problems [1][7][6][9].

The practical application of these scheduling algorithms relies on the effi-
cient implementation of collective communication. In this way, not only the
performance of particular applications would be improved, the overall system
performance would experience significant improvements.

Hardware support for multicast communication requires many functionali-
ties, that are dependent on the network topology, the routing algorithm and the
flow control strategy. For example, in a wormhole network, switches must be
capable of forwarding flits from one input channel to multiple output channels
at the same time [15]. Unfortunately, these tree-based algorithms can suffer
from blocking problems in the presence of congestion [16]. Also, the packets
must be able to encode the set of destinations in an easy-to-decode, compact
manner, in order to reduce the packet size and to guarantee fast routing times
in the switches.

Software multicasts, based on unicast messages, are simpler to implement, do
not require dedicated hardware and are not constrained by the network topology
and routing algorithms, but they can be much slower than the hardware ones.

In previous work we analyzed in depth how hardware- and software-based
multicasts are designed and implemented in the Quadrics network (QsNET)
[11]. In this paper some modifications have been performed in the communi-
cation libraries to evaluate the underlying mechanisms that provide multicast
support.

The initial part of the paper part introduces the mechanisms at the base of the
hardware and software multicast primitives that, on their turn are at the base of
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more sophisticated collective communication patterns as broadcasts, barriers,
scatter, gather, reduce, etc.

In the second part we provide an extensive performance evaluation of two
user-level collective communication patterns, barrier and broadcast, imple-
mented using both hardware and software multicast algorithms.

The rest of this paper is organized as follows. Section 1.2 presents the ba-
sic mechanisms that support collective communication on the QsNET, while
Section 1.3 gives a detailed description of the main collective communication
services. Section 1.4 presents the experimental results and performance analy-
sis. Finally, some concluding remarks and future directions are given in Section
1.5.

2. Collective comunication on the Quadrics network

The QsNET [10]is a butterfly bidirectional multistage interconnection net-
work with 4 x 4 switches, which can be viewed as a quaternary fat-tree [8].
It is based on two building blocks, a programmable network interface called
Elan [13]and a low-latency high-bandwidth communication switch called Elite
[14]. It uses wormhole switching with two virtual channels per physical link,
source-based routing and adaptive routing. Some of the most important aspects
of this network are: the integration of the local memory into a distributed virtual
shared memory, the support for zero-copy remote DMA transactions and the
hardware support for collective communication [11].

The basic hardware mechanism that supports collective communication is
provided by the Elite switches. The Elite switches can forward a packet to
a set of physically contiguous output ports. Thus, a multicast packet can be
sent to any group of adjacent nodes by using a single hardware-based multicast
transaction. When the destination nodes are not contiguous a software-based
implementation which uses a tree and point-to-point messages is used.

2.1 Hardware-based multicast

Hardware-based broadcasts are propagated into the network by sending a
packet to the top of the tree and then forwarding the packet to more than one
switch output as the packet is sent down the tree. Deadlocks might occur on the
way down when multiple broadcasts are sent simultaneously [5]. This situation
is avoided by sending broadcast packets always to a fixed top tree switch, thus
serializing all broadcasts. In Figure 1 (a) it is shown that the top leftmost switch
is chosen as the logical root for the collective communication, and every request,
in the ascending phase, must pass through one of the dotted paths until it gets
to the root switch. In Figure 1 (b) we can see how a multicast packet reaches
the root node; the multiple branches are then propagated in parallel. If another
collective communication is issued while the first one is still in progress, it is
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serialized in the root switch. The second multicast packet will be able to proceed
only after an EOP token cleans the circuit of the first communication (Figure 1
(c) and (d)). All nodes connected to the network are capable of receiving the
multicast packet, as long as the multicast set is physically contiguous.

(a) (b)

(c) (d)

Figure 1. Hardware multicast

For a multicast packet to be successfully delivered, a positive acknowledge-
ment must be received from all the recipients of the multicast group. The Elite
switches combine the acknowledgements, as pioneered by the NYU Ultracom-
puter [2][12], returning a single one to the source. Acknowledgements are
combined in a way that the “worst” ack wins (a network error wins over an
unsuccessful transaction, which on its turn wins over a successful one), return-
ing a positive ack only when all the partners in the collective communication
complete the distributed transaction with success.
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2.2 Software-based multicast

The Quadrics communication libraries implement a software-based multicast
algorithm to be used when the hardware support is not usable. The algorithm
uses a balanced tree to perform multicast transactions. Figure 2 shows the tree
used for a 16-node group with the source at node 0. The source process sends a
copy of the packet to its children, which, after receiving it, forward the packet to
their children. Eventually all the processes will be reached. As it can be seen for
the example on the figure, a broadcast would take 6 point-to-point transactions
to be completed. This algorithm is performed by the thread processor included
in the Elan. The thread processor can receive an incoming packet, do some basic
processing and send one or more replies in few � s, without any interaction with
the main processors.

Root Node

10

5 9 13

0

12 14 1511876432

1

Figure 2. Balanced tree used by the software multicast algorithm

3. Barrier Synchronization and Broadcast

3.1 Barrier Synchronization

A synchronization barrier is a logical point in the control flow of a parallel
program at which all processes in a group must arrive before any of the pro-
cesses in the group are allowed to proceed. Typically, a barrier synchronization
involves a logical reduce operation followed by a broadcast.

QsNET implements two different synchronization mechanisms in the com-
munication libraries, a mixed software and hardware barrier called �����	� 
�����������
and a purely hardware one called �����	� ��
����������� .

The algorithm implemented with �����	� 
����������� uses the balanced tree de-
scribed in Section 1.2.2 to send the ’ready’ signal to the process with VPID 0.
Each process in the tree waits for ’ready’ signals from its children, and when it
receives all of them sends its own signal up to the parent process. When the root
process receives all its ’ready’ signals it performs a hardware broadcast which
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either sets an event (which all processes are waiting for) or writes a single word
in a given memory location (which all processes are polling). If the destination
nodes are not adjacent the same tree structure is used to distribute the data using
point-to-point messages.

When the barrier is performed with �����	� ��
����������� or �����	� ��
�������	����� ��!"��� ,
all processes in the group set a barrier sequence number in a system memory lo-
cation (Figure 3(a)). All of them but the root node (which is the process with the
lowest ID in the group) wait for a ’ready’ signal (busy polling on a memory loca-
tion with ���#��� ��
����������� or an event mechanism with �����	� ��
���������#��� ��!$��� ).
The root process uses an Elan thread to send a special test-and-set broadcast
packet (subfigure (b)). This packet spans all the processes and checks if the
barrier sequence value in each process matches with its own sequence number
(it does if the corresponding process reached the barrier). All the replies are
then combined by the Elites on the way back to the root node which receives
a single ACK token (subfigure (c)). If all the nodes are ready an EOP token
is sent to the group to set an event or write a word to wake up the processes
waiting in the barrier (subfigure (d)). It has to be noted that this mechanism is
completely integrated into the network flow control.

3.2 Broadcast

The main communication primitive of the QsNET is the remote DMA. A
DMA operation transfers data between local and remote address spaces (in-
cluding Elan memory). In addition to providing point-to-point communication,
DMAs can also be used to perform group-wide operations such as broadcast
and flood DMAs (a flood is similar to a broadcast but the operation completes
as soon as any of the destinations accepts the DMA). A group of destination
processes is defined by specifying a virtual group identifier. The effect of a
write broadcast DMA is to copy the data from the source to the destination
buffers of all the processes in the group. The implementation of the broadcast
DMAs relies on all receiving processes having the destination buffer at the same
virtual address, to obtain good performance.

Two different broadcast implementations are provided by the QsNET com-
munication libraries: �����	� %��&����!"��� and �#�#�	� ��%�������!$��� . Both must be
called by all the processes in the group involved in the broadcast operation to
guarantee that the receivers have allocated the buffers by the time the transac-
tion is performed by the sender process. As a result, the broadcast is composed
of two transactions: first, a barrier synchronization and, second, the broadcast
itself. In both implementations, two types of memory resources can be used.
On the one hand a global destination buffer, which has the same virtual ad-
dress in all the processes (the communication library provides special memory
allocation functions to do that), allows DMA transactions directly from one
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(1) init barrier, (2) update sequence #, (3) wait

(a)

test sequence #

(b)

return OK or FAIL

(c)

finish barrier

(d)

Figure 3. elan hgsync() Barrier implementation

source to multiple destinations. On the other hand, if this memory allocation is
not used, system buffers are utilized as intermediate copy space (this approach
implies one copy at the source, and another copy at the destination).

The �����	� %��&����!$��� implementation uses a software-based synchronization
for the first phase similar to that utilized by the first phase of �����	� 
�����������
(Section 1.3.1). The second phase is triggered by an event set in the source node
and is done using the hardware broadcast mechanism (if all the destination Elans
are contiguous) or by means of a software-based broadcast (if the destination
Elans are not). This transaction distributes the data and wakes up the processes
waiting in the barrier performed during the first phase. This implementation
provides better performance than a call to �����	� 
����������� (which involves a
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software-based synchronization and a broadcast) and a later broadcast to send
the data.

The ���#��� �#%��&����!"��� primitive calls �����	� %��&����!$��� if the hardware broad-
cast mechanism is not available, for example when the nodes are not contiguous.
If this mechanism is available, it performs a barrier to synchronize all the nodes
using �����	� ��
���&������� (Section 1.3.1) and a hardware broadcast to distribute
the data.

The Elan hardware broadcast can only write to the memory space of a single
process per node since there is only a single context specified by the virtual
process identifier. Hence, with multiple processes per node, the only way to
use the hardware broadcast facility is to broadcast into an area of shared memory
and then get the processes to copy from there. This has been optimized by using
a FIFO like scheme that tries to overlap the broadcast with the copies.

4. Experimental Results

The performance of the collective communication services of the Quadrics
network was evaluated on a 32-node cluster of Dell 1550, running Red Hat 7.1
Linux. Each node has two 1.13 GHz Pentium-III with 1GB of ECC RAM, and
a Quadrics QM-400 Elan3 NIC attached to the network though a 66MHz/64-bit
PCI bus.

4.1 Unidirectional Ping

To provide some basic performance results of the QsNET on our experimen-
tal tesbed, we analyzed the latency and bandwitdh of the network for unicast
messages of different sizes sent between a pair of nodes. The communication
buffers were placed either in main or in Elan memory. These tests provide a
performance reference to consistently analyze the results on collective commu-
nication.

The bandwidth of the unidirectional ping is shown on Figure 4 a). The asymp-
totic data bandwith is 336 MB/s and is obtained when the buffers are placed
in the Elan memory. Taking into account the data payload and the overhead
introduced by the message header (routing tags, CRC, etc.), the delivered peak
bandwidth is 396 MB/s, or 99% of the nominal bandwidth (400 MB/s). With
buffers in main memory the peak bandwidth is 324 MB/s. These results also
show that the PCI interface running at 66 MHz provides a good performance.

Figure 4 b) shows the latency for messages shorter than 4KB. With Elan
memory buffers the latency is almost constant at '#(*) � s for messages up to +�,
bytes, because these messages can be sent using a single transaction. We note a
slight increase in the latency with main memory buffers of -�(/. � s for messages
up to 16 bytes and of ) � s for messages up to 4 KB.
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Figure 4. Unidirectional Ping
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Figure 5. Barrier Synchronization

4.2 Collective Communications

The barrier synchronization and broadcast primitives provided by the QsNET
have been tested using configurations ranging from 4 to 32 nodes. Results
have been obtained by averaging the metrics over 10000 consecutive tests.
Average latency results are reported for the barrier synchronization tests. For
the broadcast tests bandwidth and latency are reported.

In addition, tests with background traffic have been performed to analyze
the behavior of the collective communications under network contention. This
background traffic is generated by 32 processes running in 32 nodes, with all
nodes injecting messages into the network at maximum load. The goal of these
tests is to identify the performance degradation experienced by the collective
communication in the presence of congestion. The traffic patterns used to gener-
ate background traffic has been complement: the node with binary coordinates0�1�24365�0�1�2�7�5 (6(6( 5�0�3�5�0�8 communicates with the node 0�1�243&5�0�1�2�7	5 (6(6( 5�0�365�0#8 .
This pattern was selected because it uses all the network links at the same time.
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To guarantee that the performance degradation of the collective communi-
cation is only due to the network contention and not to scheduling issues, the
background traffic generation and the collective communication benchmark
were run in distinct processors.

4.2.1 Barrier Synchronization. Figure 5 shows the average time re-
quired to perform a barrier synchronization in an empty network. Results for
the three primitives provided by the libraries (Section 1.3.1) are shown versus the
number of nodes. We can see that the hardware-based implementations of the
barrier ( ���#��� ��
����������� and ���#��� ��
�������	�#��� ��!"��� ) provide the best results
when compared to the software-based implementation ( ���#��� 
���&������� ), both
in absolute performance and in scalability. The latency of the software-based
implementation grows as the logarithm of the number of nodes (approximately
1 � s each time the number of nodes is doubled). In this case the average latency
to synchronize 32 nodes is 9.1 � s. On the other hand, the hardware barriers
(which show negligible differences between them) provide an average latency
of 4.2 � s for 32 nodes.

The behavior of the barrier synchronization has been analyzed by performing
tests with complement background traffic. The results depicted in Figure 6 show
that the buffer allocation of the background traffic has no significant effect. The
network is the bottleneck in this case, not the PCI bus. The software barrier
is significantly affected by the background traffic, the slowdown is 60 in the
worst case of 32 nodes. On the other hand, there is little impact on the hardware
barriers, whose latency is only doubled (1.8 slowdown).

The scalability is also affected by the background traffic. The latency of
the hardware-based implementations with the number of nodes increases 24%
(when the number of nodes varies from 4 to 32) with no backgorund traffic, and
43% with background traffic. On the other hand, the latency increase of the
software-based synchronization is 60% and 180% respectively. The software-
based barrier latency scalability is shown to be more sensitive to complement
background traffic than the hardware-based barriers.

From a practical point of view, the hardware-based implementation of the
barrier can be considered insensitive to network contention.

4.2.2 Broadcast. As mentioned in Section 1.3.2, the �����	� %��&����!$���
primitive by default uses a hardware multicast when all the destination nodes
are contiguous. In order to perform a fair comparison between the hardware-
and the software-based multicast mechanisms, the original implementation of
�#�#��� %�������!"��� has been modified to use the tree-based algorithm, even in the
case where the destination nodes are adjacent. Thus, the results reported in this
section refer to the modified version of ���#��� %�������!"��� .
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Figure 6. elan hgsync() Latency with Contention

Figure 7 shows the results obtained with broadcast over 32 nodes using
both algorithms supported by the system libraries (Section 1.3.2) with buffers
globally allocated in main and Elan memory, that is, with the same virtual
address in all processes. As expected, the best performance is obtained with
the hardware-based broadcast with buffers in Elan memory. In this case the
measured bandwidth for 256 KB messages is 319 MB/s, which is 95% of the
unicast bandwidth (Section 1.4.1). With buffers in main memory the peak
bandwidth is 306 MB/s, or 95% of the unicast bandwidth. The asymptotic
bandwidth of the software-based implementation is 40 MB/s (8 sending steps
to reach the last node in a 32-node network), which is worse than what it would
be expected with a binary-tree implementation (5 sending steps to reach 32
nodes). For all the implementations the latency for messages shorter than 64
bytes is constant since those messages are sent using a single transaction. The
hardware-based broadcast latency is lower than 8 � s for messages up to 256
bytes, with no significant effect of the memory allocation, while the software-
based broadcast takes 10 � s longer when using Elan memory buffers and 12 � s
longer with main memory buffers.

Bandwidth and latency versus the number of nodes for 256KB messages
are depicted in Figure 8. Regarding the hardware-based broadcast, both per-
formance metrics are almost insensitive to the number of nodes (for the tested
configurations), slowdowns between 3 and 4% were measured. On the other
hand, when the software-based broadcast is used, a significant performance
degradation occurs when the number of nodes increases due to the logarithmic
behavior of the tree-based implementation. In this case the slowdown is 66%
when the number of nodes increases from 4 to 32.

In the presence of network contention (Figure 9) the broadcast performance
decreases significantly. Similar results are obtained either with background
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Figure 7. Broadcast
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Figure 8. Broadcast Scalability

traffic using main or Elan memory (due to space limitations only results for
background traffic in Elan memory are shown). The asymptotic bandwidth for
the hardware-based broadcast is 37 MB/s and the software-based broadcast gets
14 MB/s. The hardware-based implementation suffers from a higher degrada-
tion in the presence of background traffic since there is higher contention with
the background traffic to perform the link reservation.

In terms of scalability (Figure 10) the four alternatives suffer from the same
performance degradation as the number of nodes increases. Although his effect
slows down as the number of nodes is increased, we need to further investigate
this behavior by analyzing larger configurations.
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Figure 9. Broadcast with Contention
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5. Conclusion

In this paper, we present a description and evaluation of the Quadrics inter-
connection network (QsNET) support for collective communication.

The underlying mechanism that provides the hardware support for collective
communication is presented. After that, the two basic communication patterns
provided by the system software, barrier synchronization and broadcast, are
described.

An experimental evaluation of hardware-based and software-based imple-
mentations of these services has been performed on a 32-node cluster. Our
experiments show that the time to complete a hardware-based barrier synchro-
nization on the whole set of nodes is as low as 4.2 � s, with very good scalability
for the network configurations tested. In the presence of network contention, the
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average latency for the hardware barrier is 8.5 � s, with 95% of the synchroniza-
tions taking less than 16 � s. From a practical point of view the hardware-based
barrier can be considered insensitive to network contention.

Good latency and scalability are also achieved with the software-based syn-
chronization, which completes in 9.1 � s on an empty network. On the other
hand, it is shown to suffer a significant performance degradation with back-
ground traffic.

Regarding the broadcast, the hardware-based implementation can deliver a
sustained bandwidth of 319 MB/s (95% of the point-to-point bandwidth) with
less than 8 � s latency for messages up to 256 bytes when using Elan memory
buffers (306 MB/s, 8 � s with main memoy buffers). The software-based broad-
cast delivers an asymptotic bandwidth of 40 MB/s for any memory allocation
(the bottleneck in this case is the algorithm itself, not the PCI bus).

Contention tests, done in the presence of high network load, show that the
broadcast maintains reasonably good performance (i.e. less than 200 � s to
deliver messages up to 4KB). In this case the hardware-based broadcast outper-
forms the software-based broadcast thanks to its hardware-based synchroniza-
tion and packet transmission mechanism.

Overall, our analysis shows the potential of the interconnect to efficiently
support large-scale collective communication, even in the presence of high
network contention. On the other hand, while the hardware support is shown
to make possible extremely good performance, its usage is limited to those
cases where all the destination nodes are physically contiguous. Otherwise,
for example with a single faulty node, a tree-based software implementation is
used. This situation is likely to happen in current an future high-performance
paralle machines, soon to reach tens of thousand of processors. This fact makes
the hardware support unsable in practice. As future work, we plan to address
this problem to overcome the impact of a few faulty nodes (or components)
on the performance of collective communications. This will make a great
impact not only on applications performance but on the behavior of the whole
system. In particular if modern resource managers with job launching and
process scheduling functions, which rely on efficient collective communication,
are used.
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